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Abstract

The benefits of advanced liquid rocket
propulsion technology are evaluated for two-stage-to-
orbit (TSTO) reusable launch systems. Life cycle cost
(LCC) is used as a figure-of-merit and is driven by
high launch rate requirements. This paper reports the
methods and results of that study. The reported
analysis focused on chemical rocket propulsion using
either hydrogen or hydrocarbon fuels, and oxygen or
high purity hydrogen peroxide as oxidizers. Results
indicate that advanced rocket propulsion can cut life
cycle costs in half and recurring costs (cost for
additional flights) by a factor of three. The most
important propulsion parameter to be improved for this
class of vehicle is the reusability of the rocket engines,
with performance improvements a distant second.
Additionally, a TSTO vehicle using liquid oxygen and
hydrocarbon propellants in both stages has the lowest
LCC. Results were relatively insensitive to engine
reliability and cost. ’

Introduction

The expense of space access is the single
greatest barrier to development and exploitation of
space. Based on recent publications, current launch
costs per pound to low-earth-orbit (LEO) range from
$1530 for a Russian Proton K launch, to $3870 for an
Atlas 2A, to $3000 for Delta IV M+(5,4), to even
$10,300 for Shuttle or almost $15,000 for Pegasus
XL.! Past studies have concluded that reusable launch
systems with good operability features can
substantially lower that cost. The most simplistic
vehicle concept considered over time has been the
single-stage-to-orbit ~ (SSTO)  concept,  which,
unfortunately, is extremely stressing to both propulsion
performance and allowable SSTO inert weights. The
expense of even marginal progress toward enabling
SSTO vehicles (e.g. the NASP, X-33 and X-34
programs) highlights that SSTO vehicles are still very
risky developments. Study of more pragmatic near-
term launch vehicle configurations is needed. Without
new launch vehicle development in the near future,

launch costs will remain at values of $2000 to $10,000
per pound to LEO.

One vehicle type of interest is the fully
reusable TSTO launch vehicle.” Such a design greatly
reduces the sensitivity of the vehicle design to
performance, weight, and mission. This paper focuses
on an LCC comparison of five different rocket
powered TSTO launch vehicle concepts (see Fig. 1).
The first stage, referred to as the Booster, considered
both hydrocarbon and hydrogen fuels. The second
stage, called the Orbiter, considered hydrogen and
hydrocarbon fuels as well as a peroxide/JP propellant
combination. The five vehicle concepts are listed in
Table I.

Fig. 1 Notional TSTO Vehicle

This paper is declared a work of the U.S. government and is not subject to copyright protection in the United States.




Table L. Vehicle concept propellant combinations

Concept Booster Orbiter
1 LOX/HC H,0./JP
2 LOX/HC  LOX/LH;
3 LOX/LH,  HO./JP
4 LOX/LH,  LOX/H;
5 LOXHC  LOX/HC

Three advanced propulsion technology levels
and a zero technology baseline were evaluated for each
of the five vehicle concepts. The vehicles were
projected against an operations model to derive a life
cycle cost. Cost elements included development,
production, facilities, operations and costs associated
with catastrophic failures. For this study, vehicles were
sized to deliver a 12,000-pound payload to a polar
inclination low earth orbit. All vehicle concepts were
required to meet the same tempo driven mission model,
using the same operations model, and were scaled with
common weight and cost estimating relationships.

The assumed mission model was aggressive.
Over a million pounds a year are placed into orbit. This
gives a best return on any reusable launch system
investment. A fast operations tempo was demanded of
this system and drove the number of orbiters and
boosters and the extent of facilities necessary to
achieve the mission model. Payloads were assumed to
have very simple vehicle interfaces, and were assumed
capable of rapid integration with the vehicle.

A simple operations model was developed that
was used to compare the vehicle concepts. It provided
facility-processing characteristics that determined both
the number of vehicle elements and the scope of
required facilities to meet the mission model.

Life cycle cost estimation evaluated
development cost, facility costs, production,
operations, and unreliability costs.** The LCC model
was developed to primarily address propulsion
technology cost leverage, and is more accurate for cost
differences between concepts than for absolute system
LCC costs.

Results show a strong advantage of all
hydrocarbon-fueled vehicles if advanced rocket
technology is pursued. Hydrocarbon stages are
inherently smaller and have less inert weight compared
to hydrogen-fueled stages. They are also inherently
more operable. The analysis also suggests that
relatively low recurring costs are feasible with these
vehicles if advanced propulsion technology is used.

Rocket Technology and Its Advances

Several parameters have proven to be very
important in determining the effectiveness of any
particular rocket design. These parameters are derived
from the fundamental kinematics of accelerating
rockets. The total acceleration that a rocket can
perform is referred to as its velocity change (AV) and
is directly proportional to the specific impulse () of
the rocket. AV is directly related to mission capability.
For example, the AV required to achieve a polar low
earth orbit is about 30,000 feet per second.

I, is a measure of rocket fuel consumption
efficiency, and is equal to rocket thrust divided by the
total mass flow rate of rocket propellants. Generally,
the higher the I, the better the rocket performs.

Rocket AV is also proportional to the natural
logarithm of the ratio of initial to final weight. The
higher the weight ratio is, the greater the AV. The final
weight, which includes any residual propellants,
vehicle hardware, and the payload, is driven to
comparatively low values when the required AV is
high. Generally, low inert weight (e.g., high engine
thrust-to-weight ratio) is desired.

Now, from a gas dynamics perspective, the I
is proportional to the square root of the ratio of
combustion temperature divided by the mean
molecular weight of the exhaust species. High
temperature is often achieved through the chemical
combustion of a fuel and oxidizer. Molecular weight
can be kept low by the choice of those propellants.
Liquid hydrogen (LH;) and liquid oxygen (LOX)
combust at a very high temperature (~6500 degrees R)
and a very low mean molecular weight of the exhaust
species. Rockets using LOX/LH, have among the
highest I, of all chemical rockets.

However, there are serious inert weight issues
in using LH,. It has a very low density (about 4 pounds
per cubic foot vs. kerosene at 45 pounds per cubic
foot). Thus LH, tanks are comparatively very large.
LH, must be stored at very low temperatures (40
degrees R) and therefore requires thick insulation over
the tank’s entire surface area. Furthermore, since LH,
is very compressible, it requires very large and
powerful turbo-pumps to raise its pressure to 400
atmospheres or more. LH,-fueled engines have lower
thrust-to-weight than hydrocarbon-fueled engines.
Lastly, LH; density is very sensitive to temperature, so
it is very difficult to know precisely how much LH, is
loaded into a very large volume with any temperature
stagnation. Thus, LH, tanks require several times
more propellant reserves than, say, kerosene.
Therefore, the higher I, of LH,-fueled rockets does not
necessarily mean the lowest weight rocket system, and
also causes slower vehicle processing.




Besides the obvious desire to limit engine
production cost, other engine characteristics also drive
total launch system life cycle cost. Greater engine life
reduces the frequency of engine overhaul, and also
decreases the number of engines purchased. Lower
rocket engine failure rates lead to fewer lost missions,
fewer lost vehicles, and less lifetime collateral damage
(e.g. damaged facilities). It is possible, through
redundancy strategies, to mitigate engine failure costs;
but even that is constrained by catastrophic engine
failures that destroy the vehicle, which may be a
significant fraction of all failures.

All of these liquid engine attributes (I, engine
thrust-to-weight, production cost, life, failure rate, and
catastrophic failure fraction) are varied from baseline
values as a function of three phased technology
investment levels. The specific impulse improvements
of LOX/LH, engines are small because they already
achieve near theoretical values of combustion
efficiency. LOX/hydrocarbon engines have higher I,
improvements.

Vehicle Sizing

This study fixed payload mass at 12,000
pounds to a polar low earth orbit. For most subsystems,
vehicle sizing was done through simple weight
estimating relationships. For example, avionics was
fixed at 1000 pounds for the booster and 1500 pounds
for the orbiter.

Wing, tail, thermal protection system (TPS),
and control system weights were scaled to planform-
area for each stage. Orbiter TPS weight was 2.5 times
heavier per unit area than booster TPS. Fuselage
weight was scaled with fuselage surface area. Reaction
Control System (RCS) and landing gear weight were
scaled to stage dry weight. Tank weights were scaled
to tank surface areas, and pressurization was scaled to
tank volume; both depended on propellant type.

Planform area, fuselage size, and vehicle
dimensions were, in general, a function of propellant
volume. A flyback propulsion system was also sized
for the booster.>® It was based on a low bypass
turbofan. Booster flyback propellant weight was based
on the Breguet range equation.

Engine weights were a function of engine
thrust-to-weight, which depended on technology level
and propellant type. For this study, the booster and
orbiter were assumed to operate serially. Booster thrust
was set by a requiring takeoff thrust to equal 1.3 times
gross vehicle lift-off weight (GLOW). Orbiter thrust
was set equal to 1.1 times orbiter ignition weight.

Residual propellants were accounted for and
depended on propellant type, liquid hydrogen being set

at 7%, liquid oxygen at 2%, and storable propellants at
only 1%.

Mass properties were evaluated using a
spreadsheet and were used to set the input into the
Program to Optimize Simulated Trajectories (POST).
Acceleration was limited to 3 g’s and dynamic pressure
was constrained to no more than 1200 pounds per
square foot. Staging velocity was optimized for lowest
gross weight.

Table I summarizes the weights of the
baselines of the five vehicle concepts of Table I. Of the
five baseline concepts, the lowest gross weight vehicle
was the all LOX/LH, vehicle (Concept 4). The
LOX/HC booster, LOX/LLH, orbiter concept (Concept
2) actually had the lowest inert weight. Note that
hardware development and production costs are
estimated using inert weight, and are a large part of
LCC.

Concept 1 2 3 4 5

Booster Inert | 179000 42000 92500 58700 81600
Booster Prop | 1950000 570000 740000 380000 1,060,000
Orbiter Inert 29000 30400 15800 22800 23000
Orbiter Prop | 310000 160000 120000 100000 200000
Total Inert 210000 72300 108000 81500 104700
Payload 12000 12000 12000 12000 12000
GLOW 2500000 810000 980000 570000 1400000

Table II. Baseline concept weights (pounds mass)

Mission Model

The mission model adopted to evaluate LCC
stressed a system capable of rapid operations tempo.” It
provided for a nominal launch rate of once a week with
occasional surges to as many as three launches a day,
sustained for several weeks. It averaged out to about a
million pounds per year delivered to LEO.

The mission model is used to drive facility
requirements, the number of vehicles, and number of
operational personnel. All vehicle concepts with all
varying technology levels were required to meet the
mission model. Vehicle losses were accounted for due
to both end of nominal lifetime and unreliability
attrition.

Operations Model

In order to project cost, a common concept of
operations was developed.® Vehicles are launched
vertically from a very clean pad in a “gas-and-go” type
operation. No vehicle integration is allowed on the pad.
Booster and orbiter are serially burned to optimal
staging velocity, with the booster using a jet engine to
return at subsonic speeds to the launch site following
staging, reentry, and aerodynamic deceleration. The
orbiter is also returned to the launch site. Both orbiter
and booster are landed horizontally and immediately




taken to a post flight processing facility. There they are
made safe and are initially inspected. Servicing is
scheduled with the aid of a vehicle health monitoring
system. Orbiter and booster are then moved to the large
vehicle processing facility, where storage and
preliminary vehicle integration are also housed. The
vehicle processing facility is envisioned as a
shirtsleeve environment. Final vehicle pre-flight
preparation, including payload integration, is
performed in a separate facility where special safety
rules are enforced.

As shown in Figure 2, a single primary
operating location is assumed. The baseline vehicle
turn time was on the order of three to four days,
depending on technology level and propellant type.
These were based on extrapolations of advanced
complex aircraft rather than the space shuttle.

The booster and the orbiter are both returned to
the launch site and are horizontally landed on a
runway. The vehicles are towed to a post-flight
processing facility where they are made safe, initial

Processing for VTOHL
TSTO Vehicle (ot to scale)

Propellant Farm

post-flight inspection occurs, health monitoring data
diagnosed, and preliminary vehicle maintenance
actions are identified and scheduled.

Most stage servicing, maintenance, storage,
and flight integration is envisioned as occurring in a
large vehicle processing facility. Orbiters and boosters
are brought to “service bays” where tires can be
replaced, engines pulled, TPS removed and/or
replaced. Avionics, power systems, and controls would
be accessed, inspected, and serviced. Space for
horizontal stage storage and flight vehicle integration is
also assumed.

Vehicles are moved out of the vehicle
processing facility and brought to a payload integration
and pre-flight processing facility. One day is allowed
for payloads to be integrated with the vehicle in this
limited access facility, with hazardous operations
(squib installations, OMS/RCS propellant loading, etc.)
performed here. At this point, the vehicle could be
launched within a few hours of demand yet stored in
this condition for months.

Post-flight
Processing

Vehlcle Process

ing

Figure 2. TSTO Vehicle Processing Concept of Operations




The integrated vehicle is rolled to the launch
pad, fueled and launched. Cost effective operability is
achieved by integrating the vehicle before moving to
the launch pad.

A modular mission control center for
individual mission planning, control, and oversight is
included. A propellant farm adequate to support a
hundred missions is included. Shops for servicing
and maintaining individual subsystems (e.g.,
propulsion, avionics, controls, TPS) are modeled.
Personnel are also provided for supply, security, and
administration. Overall there are about 800 personnel
that are assumed to support launch system operations.

Vehicle Reliability

Vehicle reliability issues were approached as
failure probabilities.” Reliability was allocated to
avionics, airframe, attitude control, TPS, and
propulsion for the three vehicle flight segments. The
segments were boost phase, orbiter flight after
separation, and booster flight after separation. Orbiter
and booster separation reliability was included for the
boost phase, and flyback propulsion reliability was
included for the booster flight after orbiter separation.

Propulsion reliability assumed a probability
of failure that was improved with increasing
technology investment. Engine system reliability was
based on an ability to achieve orbit with an arbitrary
single engine failure. Orbiters used three engines
where two engines could supply 1.1 times the
orbiter’s separation weight in thrust. Boosters used
five engines where four engines could supply thrust
equal to 1.3 times the vehicle gross-lift-off-weight
(GLOW). A loss of vehicle was assumed if two
engines of a stage failed on a given flight. A
percentage of all engine failures were assumed to be
catastrophic.

Life Cycle Cost (LCC)

Concepts were evaluated with a common
LCC estimation methodology. The study goal was to
identify propulsion technology investment leverages.
Therefore, the fidelity of many non-propulsion
subsystem models is crude and contributes to
uncertainty in the absolute LCC value. However, the
LCC models are uniformly applied to all concept
alternatives, and the relative cost differences are
significant.

LCC is broken into development cost, facility
costs, production and maintenance costs, operations
costs, and unreliability costs. In order to estimate the
costs, a notional system schedule was developed for
uniform concept evaluation. Figure 3 shows the
assumed system schedule for a 2010 technology

freeze for system development. A 6-year schedule is
assumed to reach an initial operational capability
(I0C), and another six years is assumed needed to
reach full operational capability (FOC). The system
is operated at FOC for 20 years.

R&D end date was based on study
technology level. Level I technology is based on a
near term technology delivery. Level II is delivered
five years later, and level Il is provided five years
after that.

Development and production costs were
estimated for each major subsystem.'’ Subsystems
included are fuel and oxidizer tanks, pressurization
systems, vehicle and engine structural elements (e.g.,
intertanks, skirts, engine mounts, thrust structure,
gimbals, etc.), flight controls and surfaces, electrical
and avionics, wings and tail, landing gear, TPS, and
propulsion. Most of these cost estimating
relationships (CERs) are weight based, of the form
a*weight"b, where ‘a’ and ‘b’ vary according to
subsystem. Engine cost estimating relationships,
however, were also dependent on chamber pressure,
thrust level, engine cycle selection, and propellant

type.

2006 2010 2015 2020 2025 2030 2035

Figure 3. Notional TSTO System Schedule

Ordinary vehicle maintenance is not modeled
beyond a simple operations manning requirement.
Regular vehicle depot level maintenance is estimated
to cost 25% of theoretical first unit cost and is
averaged over the entire mission model. Engine
maintenance costs were estimated as 30% of their
acquisition cost and averaged as a cost per flight. A
detail in the study was a criterion that if any engine
were shut down abnormally, it would have a depot
maintenance performed. Thus the average number of
flights per engine maintenance cycle is slightly less
than the engine design goal.

Facility costing was generally based on
vehicle size and launch rate requirements. The
approach was to define nominal facility sizing




characteristics and throughput times. Most facility
elements had an acquisition and maintenance cost
that was proportional to its size (based on vehicle
planform). The launch pads were scaled to vehicle
gross weight. Facility elements were duplicated to
meet launch operations tempo requirements.
Facilities for supply, shops, security and
administration were included.

Operations costs were based on a manning
profile. Individuals were assigned to each vehicle
element (crew chief, load master, propulsion,
avionics, controls, power, etc.). Additionally,
personnel were assigned to each facility element.
Over 800 personnel were required to man the
squadron for the assumed mission model.

Unreliability costs accounted for partial
losses of vehicle elements. For example, an average
0.6 boosters were lost over 20 years at the highest
technology level. This was an unreliability cost of 0.6
times the nominal cost of a booster, spread over the
operational life of the system. Unreliability costs also
included an additional fixed cost of $200 million per
loss for failure investigation, identification and
validation of corrective actions, and fleet-wide fix
implementation.

Life cycle costing was performed in constant
FYO01 dollars.

Sizing Results

A comparison of the gross-lift-off-weight
(GLOW) of all five concepts at all technology levels
is summarized in Figure 4. It shows a very large
reduction in GLOW for all vehicles. Concepts that
relied on hydrogen-fueled stages had generally lower
GLOW than hydrocarbon-fueled concepts. With level
I technology, however, the difference in concept
GLOWSs was very modest. The all LOX/LH, vehicle
concept (Concept 4) has the lowest GLOW at all
technology levels.

GLOW Comparison, 12000 Ib Payload
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Figure 4. GLOW Comparison

As noted in the baseline results, the GLOW
of a concept is dominated by propellant weight, but
propellant only accounts for a tiny fraction of vehicle
cost. Inert weight tends to give a more accurate
picture of cost than gross weight. Figure 5 shows the
comparison of the inert weights of the five concepts
at all of the technology levels studied.

The results show that although the LOX/HC
boost, LOX/LH, orbiter concept (Concept 2) has the
lowest inert weight at the baseline level of
technology, it is the all LOX/HC vehicle (Concept 5)
that has the lowest inert weight at all advanced
technology levels.

This result leads to the plausibility that
lowest life cycle costs are to be found with the all
LOX/HC vehicle concept, since that vehicle is
inherently more operable without LH,. It is also
physically smaller, and therefore easier to maintain
and can use smaller, less costly, facilities.

Inert Weight Comparison, 12000 Ib Payload
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Figure 5. Inert Weight Comparison

Operations Modeling Results

When the vehicle concepts were projected
into the operations model with the requirement of
meeting the mission model, a total number of
boosters, orbiters, and their respective engines were
determined, along with the number of facility
elements required to meet the mission model.

The number of boosters varied from 13
(baseline, all LOX/LH, vehicle concept) to 10 (all
LOX/HC vehicle at all advanced technology levels).
Similarly, the number of orbiters varied from 16 to
13 for the same cases. More boosters and orbiters
were required for LOX/LH, cases because of slower
operations tempo capability.

The number of engines required showed
dramatic variation with technology level, but varied
only slightly between vehicle concepts. At baseline
technology, 640 to 650 orbiter engines, and 1020 to
1040 booster engines were required to meet the




mission model. With level I technology, the numbers
dropped to 140 to 150 orbiter engines, and 210 to 220
booster engines required. Level II required half the
engines of level I, and level III dropped the number
of engines by another 10 for each stage. The driver
for the tremendous drop in engine numbers was the
improved number of reuses allowed by the higher
technology levels.

Facilities were duplicated as needed to
achieve the required operations tempo. The study
assumptions led to a requirement for three launch
pads, four flight-preparation-and-payload-integration
bays, four vehicle assembly bays, six orbiter
maintenance bays, three booster maintenance bays,
and a single post-flight processing facility with a
separated booster and orbiter cell.

Cost Results

Life cycle costs were calculated through a
spreadsheet program. Although a cost is reported to
the nearest dollar, a number of factors contribute to a
very large uncertainty band. The mission model may
be incorrectly chosen, the payload size different, the
vehicle sizing inaccurate, the CERs off, and other
system costs not included. The authors believe the
LCC error is about -20% to +100%! However, all of
the cases studied are off in the same direction, so the
relative values do provide insight into relative LCC
relationships between the concepts and related rocket
technology improvements.

Figure 6 shows the life cycle cost of the five
concepts at all of the technology levels. Every phase
of technology investment results in savings of over a
billion dollars. The most advanced technology has a
life cycle cost that is half of the baseline cases. The
all LOX/HC vehicle (Concept 5) does achieve the
comparative lowest life cycle cost with any level of
technology above baseline.

Life Cycle Cost Estimates of TSTO Conceptual Vehicles
(20 years of Operations)
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Figure 6. Life Cycle Cost Summary

It is instructive to dig a little deeper into what
makes up these costs. In Figure 7, the costs per year
are shown by major cost elements for the best
baseline concept (LOX/HC booster, LOX/LH,
orbiter). For comparison, Figure 8 shows the cost per
year for the all LOX/HC vehicle with advanced.

Figures 7 and 8 show that substantial
operations and production cost savings are achieved
through a somewhat higher initial investment. The
initial investment cost is higher, and the system is
delayed as to when it is made fully operational. Also
note that failure costs are also lowered to the point of
being trivial.
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Figure 7. Cost per Year of Best Baseline Vehicle
Concept (LOX/HC Booster & LOX/LH2 Orbiter)

Lowest LCC w Advanced Technology: All LOX/HC

$3,000,000,000

§2,500,000,000 =

§2,000,000,000

§1,500,000,000

0P roduction
Facilities

$1,000,000,000

(S Developme

Cost/year ($FY 01)

$500,000,000

$-

Year

Figure 8. Cost per Year of Best Advanced
Technology Vehicle Concept (All LOX/HC Vehicle)

A quick study of Figure 9 reveals that the
majority of the cost savings between the cases is
found in huge reductions in the engine production
cost and the related engine maintenance cost. This is
due to the large increase in engine lifetime with
improved technology investment. The cost per
additional flight is estimated at $11 million for the
best baseline case, which was reduced to $3.5 million
for the all LOX/HC level I technology vehicle.
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Sensitivities

Sensitivities were run to evaluate the
importance of assumptions. The first of these was a
question concerning how expensive a future
hydrocarbon fuel could be before there is no longer a
life cycle cost benefit. In the study the nominal
hydrocarbon cost was set to a nominal kerosene cost
of $0.25 per pound. The hydrocarbon cost per pound
was increased to the point where the all-hydrocarbon
vehicle was no longer the lowest life cycle cost. The
LCC advantage of the all-hydrocarbon vehicle
system was lost once the hydrocarbon fuel cost rose
to slightly above $10 per pound.

The question was asked regarding the relative
contribution of the various propulsion technology
improvements. Referring back to Figure 9, and
considering the tremendous reduction in the number
of engines with advanced technology, it is clear how
important engine lifetime is to the LCC. However, it
is not clear what the relative importance of I, engine
weight, engine cost, or failure rate improvements are
to LCC benefits. In Figure 10 a representation of
those relative benefits was established by running
individual technology perturbations. The bar on the
left is for phase Il hydrocarbon engine technology
improvements applied to the all LOX/HC vehicle
concept (Concept 5). The bar on the right is for level
I hydrogen engine technology improvements
applied to the all LOX/LH, vehicle (Concept 4).

Results show a tremendous payoff for this
application for engine lifetime improvements. I,
improvements remain an important goal, but are
much less significant than engine life improvements.

Contribution of Different Technology Improvements
to Life Cycle Cost Decrease
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Figure 10. Relative Contribution of Individual
Technology Improvements to LCC Savings
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Figure 11. Mission Capability vs. LCC




Treating LCC as an independent variable, an
evaluation of the mission model sensitivity was
performed. Figure 11 asked how much LCC needed
to grow for improved mission capability. The
analysis scaled the number of missions to generate
LCC values. Greater expenditures were required for
additional vehicles, engines, and facilities. Total LCC
was lower and mission growth less expensive for
advanced technology vehicles.

These results are specific to the assumptions
made for this study. The results can easily be swayed
by many subtle assumptions. For example, Figure 11
shows the life cycle cost variance with varying
vehicle turn times also. It shows a cost of billions of
dollars for failing to realize fast turn times, and
shows that much larger investments are needed to
grow the capability.

Mass property and reliability assumptions for
non-propulsion subsystems can easily shift the size
and sensitivity of the vehicle design. Operability of
the overall vehicle processing can be negatively
impacted by any subsystem requiring extraordinary
servicing for each mission. The trends may remain
the same, but exact break points, weights, and costs
remain uncertain.

Conclusions

Propulsion technology has a dramatic impact
on the LCC of highly operable, fully reusable, two-
stage-to-orbit launch vehicles. Advanced propulsion
technology can cut LCC in half, and drop recurring
costs by a factor of 3. The best vehicle concept
studied uses hydrocarbon fuels in both stages,
although if an advanced hydrocarbon fuel were to be
introduced, it needs to cost below $10 per pound for
this to remain true. It is the improvement in engine
reuses that drives most of the savings. Advanced
propulsion technology greatly reduces the cost of
demanding more mission capability from a nominal
system.

Recommendations

This type of study can be an abyss of detail.
However, it can be incrementally improved as the
community at large inputs their drivers and issues.
General methodology improvement is highly desired.

As demonstrations of propulsion technology
are defined, LCC analysis aims them to specific
thrust levels that could be more easily transferred to
specific applications. Leverages of a factor of 2 to
LCC require serious investment.

Trades related to payload (a powerful driver
of thrust level) and payload support and integration
requirements need to be pursued. Both non-recurring

and recurring costs will vary with these
considerations and are strongly related to “load
factor.”

The number of engines also drives thrust
level. Using fewer engines is better from both a cost
and a reliability perspective, although there is a
practical upper bound to engine thrust (~ 2 million
pounds force) for cost effective engine development.
Issues related to parallel burn versus series burn, with
and without propellant cross-feed or engine-out
capability, need careful study. Engine-out strategies
need to take into account development cost and
schedule implications.

Engine reliability goals need to also be tied
to the scope and duration of the development
program. Study of how engine reliability and life
vary with margins in engine weight and I, need to be
done.

The vehicle concepts studied all relied on
boosters returning to the launch site under the power
of a jet-powered flyback propulsion system. A
preliminary initial design was pursued and was found
to be a significant booster size driver. More definition
and study are required. Trades of flyback propulsion
with alternative approaches (e.g., retro firing the
booster engines after orbiter staging) should be
studied.

The mission selected was very operations
tempo driven. Additional study of the implications of
short-duration delivery missions versus orbital
missions of significant duration is required. There are
many subtle operations questions that need study if
the vehicle is to be manned.

Other vehicle configurations (e.g., partially
reusable systems, air-launched systems, air-breathing
booster options, horizontal take-off or vertical
landing) should have similar LCC analyses
performed to more fully understand their benefits and
challenges.
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